
1

Chef PCI DSS
Compliance Guide

10/2021

 Executive Summary
If a company handles credit card data in any way, they are therefore subject to the Payment Card Industry Data
Security Standard (PCI DSS). It is well-known that PCI audits can be difficult and time-consuming to execute. The
quicker and easier it is to pass a PCI audit the better it is for an organization. Chef believes the quickest and easiest
way for an organization to pass a PCD audit is by implementing a PCI Continuous Assessment approach. This guide is
written for members of both technical and compliance teams working with systems in any CDE. Traditionally, these
teams run on-demand assessments during a PCI DSS audit. This guide illustrates how to, at a minimum, use Chef
Compliance to validate system configurations during an audit in order to map existing manual functions to
automated controls.

Table of Contents
Introduction .. 2

PCI DSS and CIS Controls ... 3

About Chef Compliance ... 3

Chef Continuous Compliance Cycle ... 4

PCI Requirements .. 5

Requirement 1: Install and Maintain a Firewall Configuration to Protect Cardholder Data .. 6

Requirement 2: Do Not Use Vendor-Supplied Defaults for System Passwords and Other Security Parameters 7

Requirement 3: Protect Stored Cardholder Data ... 13

Requirement 4: Encrypt transmission of cardholder data across open, public networks .. 14

Requirement 5: Protect all Systems Against Malware and Regularly Update AV Software 14

Requirement 6: Develop and Maintain Secure Systems and Applications .. 16

Requirement 7: Restrict access to cardholder data by business need to know ... 18

Requirement 8: Identify and Authenticate Access to System Components .. 20

Requirement 10: Track and Monitor all Access to Network Resources and Cardholder Data 23

Requirement 11: Regularly Test Security Systems and Processes .. 25

Requirements 9 & 12 .. 26

Conclusion .. 26

Legal Disclaimer .. 26

ABOUT PROGRESS ... 27

2

Introduction

Maintaining PCI DSS compliance is a struggle for many organizations, particularly those that have experienced a data
breach. The 2020 Verizon Payment Security Report found that only 27% of organizations were able to maintain full
compliance with the PCI-DSS, an 8.8% drop from the year before. Further, the report found that companies in the retail,
hospitality, and finance industries struggled the most with PCI DSS requirements.

A typical approach to passing a PCI DSS audit is to issue ad-hoc remote commands to gather information, compose
verification scripts to run by hand, or to manually verify a number of system settings in tandem with auditors by using
approaches like screenshots. This approach is fundamentally unsustainable since it requires custom work, is specific to the
context of your PCI DSS audit, and cannot be leveraged in other parts of business-critical workflows, such as checking for
compliance in pre-production environments.

Adopting a continuous compliance approach allows you to quickly answer audit questions at any time, not just quarterly
or yearly. With Chef Compliance, you can enter an audit cycle knowing your exact compliance posture, rather than being
surprised by auditors who find weak points in your environment. You can identify compliance issues or policy breaches
rapidly and react quickly to triage and remediate problems even before auditors show up, allowing you to demonstrate how
compliance has evolved and improved over time.

Chef InSpec is a security hardening, testing and auditing tool that turns your compliance, security, and other policy
requirements into automated tests. These tests are designed to continuously gather data about your systems using a
standardized language and data format that clearly map to the compliance controls your auditors care about. Chef
Compliance has several packaged compliance rulesets that cover industry-standard use cases. However, if rules for your
specific use case do not exist, Chef Compliance allows you to easily compose them. Chef Compliance is designed to leverage
the same automated testing used in other parts of your organization to make discussions with your compliance auditors
easier and faster to resolve.

This guide covers the 12 PCI DSS security requirements that apply to all system components included in or connected to the
CDE. For each requirement, this guide illustrates how to use existing Chef Compliance controls -- or create new controls --
to verify compliance.

https://enterprise.verizon.com/resources/executivebriefs/2020-psr-executive-insights.pdf

3

PCI DSS and CIS Controls
The Payment Card Industry Data Security Standard (PCI DSS) provides baseline technical and operational requirements
designed to protect account data. PCI DSS contains 12 major requirements with corresponding testing procedures used for
compliance assessments as part of an entity’s validation process. While PCI DSS comprises a minimum set of requirements
for protecting account data, it may be enhanced by additional controls and practices to further mitigate risks.

The Center for Internet Security (CIS) publishes a set of controls that collectively form a defense-in-depth set of best
practices that mitigate the most common attacks against systems and networks. The CIS Benchmarks are developed by
a community of IT experts who apply their first-hand experience as cyber defenders to create a set of globally accepted
security best practices. As a result, the CIS Benchmarks have matured by an international community of individuals and
institutions that not only identify, track, and remediate cyber security attacks, but also map those controls to regulatory
and compliance frameworks.

This guide uses mappings of CIS controls to PCI DSS standards to inspect a Red Hat Enterprise Linux 7 system for
compliance. A subscription to CIS benchmarks for other operating systems, expressed in Chef InSpec, is included with a
Chef Compliance license.

About Chef Compliance
Chef Compliance is built on Chef core technology proven in large, complex environments over the past 10+ years. It is
designed to help enterprises maintain compliance and prevent security incidents across heterogeneous hybrid and multi-
cloud environments while improving speed and efficiency. Standards-based audit and remediation content, easily-tuned
baselines and comprehensive visibility and control make it easy to maintain and enforce compliance across your entire fleet.

Chef Compliance helps automate the standards by incorporating compliance processes into every stage of the
development cycle based on the following Chef underlying core technologies:

• Chef InSpec allows developers and systems engineers to replace lengthy and opaque security specification

documents – written in PDF or Excel – with unambiguous tests that are easily readable by all parties involved:
security engineers, auditors, systems administrators, and others.

• Chef Automate provides a standard set of security baselines you can easily customize and extend. Examples of
baselines included are CIS Compliance Benchmarks and several DISA STIGs. Chef Automate can convert existing,
hard-to-use formats to human-readable InSpec in order to take advantage of NIST baselines published in those
formats.

• Chef Infra configuration management can be used to remediate any findings and keep systems in their
correct, remediated state, thereby ensuring continuous compliance.

https://www.cisecurity.org/cybersecurity-tools/mapping-compliance/

4

Chef Continuous Compliance Cycle

• Acquire - access trusted content aligned to industry benchmarks for audit and remediation. With
remediation content, organizations can ensure remediation actions align directly to audit results.

• Define - define compliance baselines and tune them to your organization’s unique needs. Flexible compliance
waiver capabilities allow teams to turn on/off individual controls to avoid false positives and misconfigurations.

• Detect - continuously monitor and evaluate your compliance posture by detecting deviations from intended
state at any point in the software delivery lifecycle.

• Remediate - new remediation capabilities allow you to address non-compliant nodes with individual controls
that align with audit tests. Remediation is easily applied, without requiring coding skills to ensure CIS and DISA
standards.

• Report - immutable record in maintaining comprehensive and up-to-date visibility across heterogeneous
environments, easily view differences between baseline and remediated states, and track waiver status to enable
fast and accurate audits any time.

Chef Compliance’s collaboration capabilities allow all parties involved in pre-production development processes and
production operations the ability to see, in real-time, the compliance status of any infrastructure. No longer do teams need
to rely on expensive, infrequently used tools accessible only by security engineers. With Chef Compliance, IT organizations
can move from being reactive about compliance issues to always being compliant – and being able to prove it at any time.

5

Chef Compliance helps organizations reduce risk, increase speed, and improve efficiency. With security capabilities in Chef
Compliance, DevOps teams can work closely with their InfoSec counterparts to ensure the software they ship is compliant
and secure, turning InfoSec into an enabler rather than an inhibitor of velocity. Chef Compliance enables collaboration
among Infrastructure, Operations and Information Security teams, and is available in two options tailored to the needs of
these audiences:

Chef Compliance: helps security and operations teams maintain complete visibility over the compliance posture of their
estate. It comes with extensive audit content based on Center for Internet Security (CIS) benchmarks and Defense
Information Systems Agency (DISA) standards that can be easily fine-tuned to meet specific organization needs. It
provides up-to-date visibility across any on-premises or cloud environment.

Chef Compliance Automation: built for DevOps and Infrastructure teams to help close the loop between audit and
remediation and enable continuous compliance in the enterprise. Remediation functionality and trusted, standards-
based content make it easy to remediate issues uncovered during audits without writing any code.

Chef Premium Content: delivers Chef-curated content for audits, remediation and desktop configuration that is based on
CIS (Center for Internet Security) certified benchmarks or DISA Security Technical Implementation Guides (STIGs). Chef
continuously maintains and updates the Premium Content library and, whenever an updated or new profile is identified,
Chef quickly certifies the content and makes it available for content subscribers.

PCI Requirements
The requirements of the Payment Card Industry Data Security Standard encompass a variety of concerns with respect to the
cardholder data environment). The CDE is comprised of people, processes and technologies that store, process, or transmit
cardholder data or sensitive authentication data. The scope of a PCI DSS audit also includes interviews, process reviews, and
inspection of physical assets. For the purposes of this document, we will focus on the inspection of “system components”
within the CDE, including network devices, servers, hypervisors, virtual machines, and application software.

While some of the requirements focus on processes and policy not applicable on the systems level, the sections below
contain an illustrate some of the CIS benchmarks included with Chef Compliance to address 10 of the 12 major audit
requirements of the PCI DSS.

These controls are referenceable as a demo profile to use against a Red Hat Enterprise Linux 7 server. The controls reference
underlying CIS Benchmarks, which are partially shown in the sections below that walk through how these controls operate
in practice. This whitepaper and the associated demo profile are an introductory approach to how an organization could
use Chef Automate to address PCI DSS requirements. They are not an exhaustive guide for complete implementation.

6

The PCI DSS requirements covered by this whitepaper are:

1 - Install and maintain a firewall configuration to protect cardholder data

2 - Do not use vendor-supplied defaults for system passwords and other security parameters are

not used 3 - Protect stored cardholder data

4 - Encrypt transmission of cardholder data across open, public

networks 5 - Use and regularly update anti-virus software or

programs

6 - Develop and maintain secure systems and applications

7 - Restrict access to cardholder data by business need-to-

know 8 - Assign a unique ID to each person with computer

access

10 - Track and monitor all access to network resources and cardholder

data 11 - Regularly test security systems and processes

PCI DSS requirements 9 and 12 concern physical security and processes, respectively, and cannot be validated using
automated approaches.

Requirement 1: Install and Maintain a Firewall Configuration to Protect Cardholder Data

Any devices connecting to the internet should use a firewall to limit access to open ports. Section 1.4 of the PCI DSS
(Firewall software or equivalent) can be addressed with the CIS benchmark ruleset (Limitation & Control of Network Ports) to
ensure firewall rules for all open ports.

1. Ensure firewall rules for all open ports

Any ports that have been opened on non-loopback addresses need firewall rules to govern traffic. Without a firewall rule
configured for open ports, the default firewall policy should drop all packets to these ports.

This control uses Ruby code to create a list of all open system ports listening to non-loopback addresses. The control
also gathers a list of all currently implemented IPTables rules. The control ensures each open port listening on non-
loopback addresses has an associated IPTables rule with both an inbound and outbound entry.

7

Requirement 2: Do Not Use Vendor-Supplied Defaults for System Passwords and Other

Security Parameters

Malicious individuals (external and internal to an entity) often use vendor default passwords and other vendor default
settings to compromise systems. These passwords and settings are well known by hacker communities and are easily
determined via public information.

Section 2.1 of the PCI DSS (Always change vendor-supplied defaults) can be addressed with the CIS benchmark ruleset
(Controlled use of Administrative Privileges). Five examples are shown below.

1. Ensure password creation requirements are configured

Strong passwords protect systems from being hacked through brute force methods. Settings that require strong passwords
are often a good way to ensure common vendor-supplied default passwords are not used on a system. The system should
enforce use of strong passwords.

control "cisecurity.benchmarks_rule_3.6.5_Ensure_firewall_rules_for_
open_ports" do

title "Ensure firewall rules exist for all open ports"
desc "Any ports that have been opened on non-loopback addresses need

firewall rules to govern traffic. Rationale: Without a firewall rule
configured for open ports default firewall policy will drop all packets
to these ports."

impact 1.0
tag "cis-rhel7-2.1.1": "3.6.5"
tag "level": "1"
tag "type": ["Server", "Workstation"]
port.where { protocol =~ /.*/ && port >= 0 && address =~

/^(?!127\.0\.0\.1|::1|::).*$/ }.entries.each do |entry|
rule_inbound = "-A INPUT -p #{entry[:protocol]} -m

#{entry[:protocol]} --dport #{entry[:port]} -m state --state
NEW,ESTABLISHED -j"

rule_outbound = "-A OUTPUT -p #{entry[:protocol]} -m
#{entry[:protocol]} --sport #{entry[:port]} -m state --state ESTABLISHED
-j A"

describe iptables do
it { should have_rule(rule_inbound) }
it { should have_rule(rule_outbound) }

end
end

end

8

control "cisecurity.benchmarks_rule_5.3.1_Ensure_password_creation_
requirements" do

title "Ensure password creation requirements are configured"
desc "The pam_pwquality.so module checks the strength of passwords.
The settings shown above are one possible policy. Alter these values
to conform to your own organization's password policies. Rationale:
Strong passwords protect systems from being hacked through brute force
methods."

impact 1.0
tag "cis-rhel7-2.1.1": "5.3.1"
tag "level": "1"
tag "type": ["Server", "Workstation"]
describe file('/etc/pam.d/system-auth') do

its('content') { should
match(/^\s*password\s+requisite\s+pam_pwquality\.so\s+(\S+\s+)*try_
first_pass/) }

its('content') { should
match(/^\s*password\s+requisite\s+pam_pwquality\.so\s+(\S+\
s+)*retry=[3210]/) }

end
describe file('/etc/pam.d/password-auth') do

its('content') { should

match(/^\s*password\s+requisite\s+pam_pwquality\.so\s+(\S+\s+)*try_
first_pass/) }

its('content') { should
match(/^\s*password\s+requisite\s+pam_pwquality\.so\s+(\S+\
s+)*retry=[3210]/) }

end
describe file('/etc/pam.d/password-auth') do

its('content') { should
match(/^\s*password\s+requisite\s+pam_pwquality\.so\s+(\S+\s+)*try_
first_pass/) }

its('content') { should
match(/^\s*password\s+requisite\s+pam_pwquality\.so\s+(\S+\
s+)*retry=[3210]/) }

end
describe parse_config_file('/etc/security/pwquality.conf') do

its('minlen') { should match(/1[4-9]|[2-9][0-9]|[1-9][0-9][0-9]+/) }
its('dcredit') { should match(/-[1-9][0-9]{0,}/) }
its('ucredit') { should match(/-[1-9][0-9]{0,}/) }

its('ocredit') { should match(/-[1-9][0-9]{0,}/) }
its('lcredit') { should match(/-[1-9][0-9]{0,}/) }

end
end

9

The pam_pwquality.so module checks the strength of passwords. It performs checks such as making sure a password is not
a dictionary word, is a certain length, contains a mix of characters (e.g. alphabet, numeric, other) and more. The control
above inspects the content of the pam.d system-auth and password-auth config files to ensure:

• try_first_pass - retrieve the password from a previous stacked PAM module. If not available, then

prompt the user for a password.

• retry=3 - Allow 3 tries before sending back a failure.

It also inspects the settings in the pwquality.conf to ensure the following password strength settings:

• minlen=14 - password must be 14 characters or more

• dcredit=-1 - provide at least one digit

• ucredit=-1 - provide at least one uppercase character

• ocredit=-1 - provide at least one special character

• lcredit=-1 - provide at least one lowercase character

These values can be tuned to the needs of your individual organization.

2. Ensure system accounts are non-login

It’s important to make sure that vendor-provided accounts are not being used by regular users and that they are
prevented from providing an interactive shell.

10

control "cisecurity.benchmarks_rule_5.4.2_Ensure_system_accounts_are_
non-login" do

title "Ensure system accounts are non-login"
desc "There are a number of accounts provided with Red Hat 7 that

are used to manage applications and are not intended to provide an
interactive shell. Rationale: Prevent them from being used to provide an
interactive shell."

impact 1.0
tag "cis-rhel7-2.1.1": "5.4.2"
tag "level": "1"
tag "type": ["Server", "Workstation"]
describe passwd.where { user =~ /^(?!root|sync|shutdown|halt).*$/ } do

its("entries") { should_not be_empty }
end
describe passwd.where { user =~ /^(?!root|sync|shutdown|halt).*$/ &&

uid.to_i < 1000 && shell != "/sbin/nologin" } do
its("entries") { should be_empty }

end
end

11

This control inspects settings for all system accounts. By default, Red Hat Enterprise Linux 7 sets the password field for
these accounts to an invalid string. Therefore, their password entries. should not be empty. It also looks at all accounts with
UID below 1000 to ensure that the shell field in the password file be set to /sbin/nologin. This prevents the account from
potentially being used to run any commands.

3. Ensure password fields are not empty

All accounts, including vendor-supplied accounts, must have passwords or be locked to prevent the account from being used
by an unauthorized user. If an account has an empty password field that means that anybody may authenticate as that user
without providing a password.

This control uses Ruby along with InSpec built-in functions to iterate through every user account in /etc/shadow. For each
account found, it ensures its password is not empty.

control "cisecurity.benchmarks_rule_6.2.1_Ensure_password_fields_are_
not_empty" do

title "Ensure password fields are not empty"
desc "An account with an empty password field means that anybody

may log in as that user without providing a password. Rationale: All
accounts must have passwords or be locked to prevent the account from
being used by an unauthorized user."

impact 1.0
tag "cis-rhel7-2.1.1": "6.2.1"
tag "level": "1"
tag "type": ["Server", "Workstation"]
shadow.users(/.+/).entries.each do |entry|

describe entry do
its('passwords') { should_not eq [''] }

end
end

end

12

4. Ensure inactive password lock is 30 days or less

Inactive accounts pose a threat to system security. This includes vendor-supplied accounts, which should be automatically
disabled if they have not been accessed in 30 days or less. Further, this protects the system from inactivity that may prevent
users from noticing anomalies in their accounts.

In this example, the control uses an in-line Bash script to inspect the output of the “getent shadow” command. The script
handles the logic for examining the system and InSpec simply examines the exit code of the script. This approach is useful for
integrating existing tools or scripts already in use throughout your organization.

control "cisecurity.benchmarks_rule_5.4.1.4_Ensure_inactive_pass_lock_
is_30_days_or_less" do

title "Ensure inactive password lock is 30 days or less"
desc "User accounts that have been inactive for over a given period

of time can be automatically disabled. Rationale: Inactive accounts pose
a threat to system security since the users are not logging in to notice
failed login attempts or other anomalies."

impact 1.0
describe file("/etc/default/useradd") do

its("content") { should
match(/^\s*INACTIVE\s*=\s*(30|[1-2][0-9]|[1-9])\s*(\s+#.*)?$/) }

end
describe bash("#!/usr/bin/env sh\n\n#\n# CIS-CAT Script Check

Engine\n# \n# Name Date Description\n# --------------
---\n# B. Munyan
7/20/16 Ensure no users have a password inactivity period > 30\n#
\n\noutput=$(\n/usr/bin/getent shadow | awk -F : 'match($2, /^[^!*]/)
&& ($7 == \"\" || $7 > 30) { if ($7 == \"\") { print \"User \" $1 \"
password inactivity period is not defined\" } else { print \"User \" $1
\" Password Inactivity Period > 30 (\" $7 \") \" } }'\n)\n\n# we captured
output of the subshell, let's interpret it\nif [\"$output\" == \"\"]
; then\n exit $ XCCDF_RESULT_PASS\nelse\n # print the reason
why we are failing\n echo \"$output\"\n exit $XCCDF_RESULT_FAIL\
nfi\n") do

its("exit_status") { should eq 0 }
end

end

13

Requirement 3: Protect Stored Cardholder Data

Section 3 of the PCI DSS examines protection methods for limiting access to critical components of cardholder data, even
when it is being accessed by authorized users or by intruders that have circumvented other security controls. Because this
requirement of the PCI DSS is mainly concerned with potential risk mitigation techniques of custom data, schema, and
storage requirements, there are no “one size fits all” controls included in the CIS controls to account for all possible
scenarios. You must build controls custom to your organizational needs. Chef makes that task easily achievable using
InSpec’s resource model.

1. Ensure a non-authorized user cannot reach cardholder data

In this example, we could write a control to ensure that unauthorized database users cannot access credit card numbers.

This example control would connect to a known production Oracle database (ora01. mycompany.com) and attempt to
authenticate as the users “sys”, “system”, and “alice”. In this example we presume that these users should not have access
to stored credit card information. Therefore, when they attempt to select these rows there should be no data returned.

control "mycompany.custom_rule1.0.0_Ensure_non_privileged_users_cant_
access_cc_numbers" do

title "Ensure that non-privileged database users do not see CC
numbers"

desc "A legitimate and authorized database user account should not
be able to access credit card numbers if they are not specifically
authorized to do so. Rationale: Only privileged accounts should be able
to access cardholder data."

impact 1.0
tag "level": "1"
tag "type": ["Server", "Workstation"]
%w[sys system alice].each do |unprivileged|

describe oracledb_session(user: unprivileged, password:'password',
service:'ora01.mycompany.com').query('SELECT creditcard FROM accounts').
rows do
its('count') { should eq 0 }

end
end

end

14

Requirement 4: Encrypt transmission of cardholder data across open, public networks

Sensitive information must be encrypted during transmission over networks that are easily accessed by malicious
individuals. Section 4.1 of the PCI DSS requires use of strong cryptography and security protocols to safeguard sensitive
cardholder data during transmission over open, public networks, including use of secure versions. Some protocol
implementations (such as SSL, SSH v1.0, and early TLS) have known vulnerabilities that an attacker can use to gain control of
the affected system.

1. Ensure that the TLS 1.2 protocol is active on any SSL ports

In this example control, we check to see that TLS 1.2 is enabled on any SSL ports listening for connections.

This control is an example of using InSpec’s built-in “ssl” resource. While this control ensures TLS 1.2 is the active protocol

on any SSL ports, it does not ensure that other non-secure protocols are disabled. For a more thorough check of SSL

settings, refer to the dev-sec SSL benchmark.

Requirement 5: Protect all Systems Against Malware and Regularly Update AV Software

Maintaining a vulnerability management program includes ensuring that system patches and security software is available
and installed on all systems. For RHEL 7 servers, this includes ensuring that all package manager repositories are properly
configured so systems may receive vendor-provided updates.

1. Ensure package manager repositories are configured

If a system’s package repositories are misconfigured, important patches may not be identified or a rogue repository could

control "mycompany.custom_rule2.0.0_Ensure_TLS_v1.2_is_in_use" do
title "Ensure that TLS 1.2 is the encryption protocol in use"
desc "TLS 1.2 is a known secure protocol that should be used for

SSL connections. Rationale: SSL2, SSL3, TLS1.0, and TLS1.1 all contain
known vulnerabilities that an attacker can use to gain control of these
systems."

impact 1.0
tag "level": "1"
tag "type": ["Server", "Workstation"]
sslports.each do |socket|

proc_desc = "on node == #{command('hostname').stdout.strip} running
#{socket.process.inspect} (#{socket.pid})"

describe ssl(port: socket.port).protocols('tls1.2') do
it(proc_desc) { should be_enabled }
it { should be_enabled }

end
end

end

https://github.com/dev-sec/ssl-baseline

15

introduce compromised software. Systems should have their authorized package manager repositories configured in a way
that ensures they receive the latest patches and updates.

This control uses Ruby to iterate through all package repositories defined as Red Hat system repos in the CIS benchmarks.
Each of those repositories must be defined on the system and enabled. The control also ensures that repositories set up via
yum to install software from additional resources are also defined and enabled on the system.

control "cisecurity.benchmarks_rule_1.2.1_Ensure_pkg_manager_repos_are_
configured" do

title "Ensure package manager repositories are configured"
desc "Systems need to have package manager repositories configured

to ensure they receive the latest patches and updates. Rationale: If a
system's package repositories are misconfigured important patches may
not be identified or a rogue repository could introduce compromised
software."

impact 0.0
tag "cis-rhel7-2.1.1": "1.2.1"
tag "level": "1"
tag "type": ["Server", "Workstation"]
REDHAT_REPOS.each do |repository|

describe yum.repo(repository) do
it { should exist }
it { should be_enabled }

end
end

cmd = command('yum repolist enabled').stdout.split("\n")
get_other_repos = cmd.slice(2..cmd.length-2) || []
other_repos = get_other_repos.map { |repositories| repositories.

gsub(/\s.+/, '') }
other_repos -= REDHAT_REPOS
unless other_repos.empty?

other_repos.each do |repository|
describe yum.repo(repository) do
it { should_not exist }

it { should_not be_enabled }

end
end

2. Ensure updates, patches, and additional security software is installed

Periodically, patches are released for included software either due to security flaws or to include additional functionality.
Rationale: Newer patches may contain security enhancements that would not be available through the latest full update. As
a result, it is recommended that the latest software patches be used to take advantage of the latest functionality. As with
any software installation, organizations need to determine if a given update meets their requirements and verify the
compatibility and supportability of any additional software against the update revision that is selected.

16

This control uses a custom Chef InSpec resource to defer management of updates to the local package manager based
on Linux distribution. For a more thorough approach to ensuring proper Linux patching, refer to the dev-sec Linux
Patch benchmark4.

Requirement 6: Develop and Maintain Secure Systems and Applications

Attackers use system vulnerabilities to gain unauthorized privileged access to systems. Requirement 6 of the PCI DSS is
a lengthy description of several approaches that collectively represent sound risk-mitigation strategies to reduce your
company’s exposure to different attack vectors. From a system level, it is also critical to capture and report suspicious security
events and take reasonable precautions to prevent unauthorized access to begin with.

This section contains a small sample of steps you can take to accomplish those goals.

1. Ensure iptables is installed

On Red Hat Enterprise Linux systems, iptables is useful for firewall management and configuration. It allows configuration of
the IPv tables in the Linux kernel and the rules stored within them. Most firewall configuration utilities operate as a front-end to
iptables.

Checking installation is easily accomplished with the InSpec “package” resource.

control "mycompany.custom_rule3.0.0_Ensure_updates_and_patches_
installed" do

title "Ensure that all updates, patches, and latest packages are
installed"

desc "Periodically patches are released for included software either
due to security flaws or to include additional functionality. Rationale:
Newer patches may contain security enhancements that would not be
available through the latest full update. As a result, it is recommended
that the latest software patches be used to take advantage of the latest
functionality."

impact 1.0
tag "cis-rhel7-2.1.1": 1.8
tag "level": "1"
tag "type": ["Server", "Workstation"]
linux.update.updates.each { |update|

describe package(update['name']) do
its('version') { should eq update['version'] }

end
}

only_if { linux_update.updates.length > 0 }
end

17

2. Ensure a default deny firewall policy

When using iptables, a default “accept” policy will accept any packet that is not configured to be denied. It is easier to
whitelist acceptable usage than it is to blacklist unacceptable usage. Set a default “deny all” policy on connections to
ensure any unconfigured network usage is rejected.

control "xccdf_org.cisecurity.benchmarks_rule_3.6.1_Ensure_iptables_is_
Installed" do

title "Ensure iptables is installed"
desc "iptables allows configuration of the IPv4 tables in the linux

kernel and the rules stored within them. Rationale: iptables is required
for firewall management and configuration."

impact 1.0
tag "cis-rhel7-2.1.1": "3.6.1"
tag "level": "1"
tag "type": ["Server", "Workstation"]
describe package('iptables') do

it { should be_installed }
end

end

control "cisecurity.benchmarks_rule_3.6.2_Ensure_default_deny_firewall_
policy" do

title "Ensure default deny firewall policy"
desc "A default deny all policy on connections ensures that any
unconfigured network usage will be rejected. Rationale: With a default
accept policy the firewall will accept any packet that is not configured
to be denied. It is easier to whitelist acceptable usage than to
blacklist unacceptable usage."

impact 1.0
tag "cis-rhel7-2.1.1": "3.6.2"
tag "level": "1"
tag "type": ["Server", "Workstation"]
%w[INPUT OUTPUT FORWARD].each do |chain|

describe.one do
describe iptables do

it { should have_rule("-P #{chain} DROP") }
end
describe iptables do

it { should have_rule("-P #{chain} REJECT") }
end

end
end

end

18

This control uses the InSpec built-in iptables resource to ensure that all INPUT, OUTPUT, and FORWARD rules are either
dropped or rejected, by default, unless explicitly allowed.

The use of “describe.one” is effectively an OR test. Only one of these matches must be found in order for the control to be
met.

Requirement 7: Restrict access to cardholder data by business need to know

To ensure critical data can only be accessed by authorized personnel, systems and processes must be in place to limit access
based on need-to-know and according to job responsibilities. “Need to know” is when access rights are granted to allow only
the least data and privileges needed to perform a job. At the very minimum, we can restrict access to administrative accounts.

1. Ensure access to the su command is restricted

Restricting the use of the “su” command, and using “sudo” in its place, provides system administrators better control of
the escalation of user privileges to execute privileged commands. The sudo utility also provides a better logging and
audit mechanism, as it can log each command executed via sudo. Normally, the su command can be executed by any
user. By uncommenting the pam_wheel.so statement in the /etc/pam.d/su file, the su command will only allow users in
the wheel group to execute “su”.

This control inspects the contents of /etc/pam.d/su to ensure the correct content is found.

control "cisecurity.benchmarks_rule_5.6_Ensure_access_to_the_su_command_
is_restricted" do

title "Ensure access to the su command is restricted"
desc "The su command allows a user to run a command or shell as

another user. The program has been superseded by sudo , which allows for
more granular control over privileged access. Normally, the su command
can be executed by any user. By uncommenting the pam_wheel.so statement
in /etc/pam.d/su, the su command will only allow users in the wheel
group to execute su."

impact 1.0
tag "cis-rhel7-2.1.1": 5.6
tag "level": "1"
tag "type": ["Server", "Workstation"]
describe file("/etc/pam.d/su") do

its("content") { should
match(/^\s*auth\s+required\s+pam_wheel.so\s+(\S+\s+)*use_uid\s*(\S+\
s+)*$/) }

end
end

19

2. Ensure SSH root login is disabled

Disallowing root logins over SSH requires system admins to authenticate using their own individual account, then escalating
to root only via sudo (if you’ve disabled access to “su” as in the control above). This restriction limits opportunity for non-
repudiation and provides a clear audit trail in the event of a security incident. The PermitRootLogin parameter specifies if the
root user can login using ssh.

This control uses InSpec’s built-in sshd_config resource to inspect the configuration of the OpenSSH daemon.

3. Ensure SSH access is limited

Restricting which users can remotely access the system via SSH will help ensure that only authorized users access the system.
There are several options available to limit which users and groups can access the system via SSH. It is recommended that at
least one of the following options be leveraged: AllowUsers, AllowGroups, DenyUsers, or DenyGroups. These are each space-
separated lists of usernames to allow, group names to allow, usernames to deny, or group names to deny. Numeric values
for users and groups are not recognized by these constructs.

control
"cisecurity.benchmarks_rule_5.2.8_Ensure_SSH_root_login_is
_ disabled" do

title "Ensure SSH root login is disabled"
desc "The PermitRootLogin parameter specifies if the root

user can login using ssh(1). The default is no. Rationale:
Disallowing root
logins over SSH requires system admins to authenticate
using their own individual account, then escalating to root via
sudo"

impact 1.0
tag "cis-rhel7-2.1.1": "5.2.8"
tag "level": "1"
tag "type": ["Server",
"Workstation"] describe
sshd_config do

its('PermitRootLogin') {
should eq 'no' } end

end

20

Requirement 8: Identify and Authenticate Access to System Components

Assigning unique IDs to each person with access ensures that individuals are uniquely accountable for their actions.
With accountability in place, any actions taken on critical data and systems can be traced to known and authorized users
and processes. The effectiveness of authentication depends on several design details—particularly, how frequently
password attempts can be made by an attacker, and the security methods to protect user passwords at the point of
entry, during transmission, and while in storage.

1. Ensure SSH PermitEmptyPasswords is disabled

Disallowing remote shell access to accounts that have an empty password reduces the probability of unauthorized access to
the system. The PermitEmptyPasswords parameter specifies if the SSH server allows login to accounts with empty password
strings. This control uses InSpec’s built-in sshd_config resource to inspect the configuration of the OpenSSH daemon.

control "cisecurity.benchmarks_rule_5.2.15_Ensure_SSH_access_
is_limited"

do
title "Ensure SSH access is limited"
desc "There are several options available to limit which users

and
group can access the system via SSH. It is recommended that at

least
one of the following options be leveraged: AllowUsers,

AllowGroups,
DenyUsers, or DenyGroups. Rationale: Restricting which users

can
remotely access the system via SSH will help ensure that only

authorized
users access the system."

impact 1.0
tag "cis-rhel7-2.1.1": "5.2.15"
tag "level": "1"
tag "type": ["Server", "Workstation"]
describe.one do

describe sshd_config do
its('AllowUsers') { should match /[\S|\s]+/ }

end
describe sshd_config do

its('AllowGroups') { should match /[\S|\s]+/ }
end
describe sshd_config do

its('DenyUsers') { should match /[\S|\s]+/ }
end
describe sshd_config do

its('DenyGroups') { should match /[\S|\s]+/ }
end

end
end

21

2. Ensure SSH LogLevel is set to INFO

SSH provides several logging levels with varying amounts of verbosity. DEBUG is specifically not recommended other than
strictly for debugging SSH communications since it provides so much verbose information that it becomes difficult to identify
important security information. Setting the log level to INFO records login activity of SSH users. In situations like Incident
Response, it is important to determine when a particular user was active on a system. The logout record can eliminate those
users who disconnected, which helps narrow the search field. This control uses InSpec’s built-in sshd_config resource to
inspect the configuration of the OpenSSH daemon.

control "cisecurity.benchmarks_rule_5.2.9_Ensure_SSH_
PermitEmptyPasswords_is_disabled" do

title "Ensure SSH PermitEmptyPasswords is disabled"
desc "The PermitEmptyPasswords parameter specifies if the SSH server

allows login to accounts with empty password strings. Rationale:
Disallowing remote shell access to accounts that have an empty password
reduces the probability of unauthorized access to the system"

impact 1.0
tag "cis-rhel7-2.1.1": "5.2.9"
tag "level": "1"
tag "type": ["Server", "Workstation"]
describe sshd_config do

its('PermitEmptyPasswords') { should eq 'no' }
end

end

control "cisecurity.benchmarks_rule_5.2.3_Ensure_SSH_LogLevel_is_set_to_
INFO" do

title "Ensure SSH LogLevel is set to INFO"
desc "The INFO parameter specifies that login and logout activity

will be logged. Rationale: SSH provides several logging levels with
varying amounts of verbosity. INFO level is the basic level that only
records login and logout activity of SSH users."

impact 1.0
tag "cis-rhel7-2.1.1": "5.2.3"
tag "level": "1"
tag "type": ["Server", "Workstation"]
describe sshd_config do

its('LogLevel') { should eq 'INFO' }
end

end

22

3. Ensure SSH MaxAuthTries is set to 4 or less
Setting the MaxAuthTries parameter to a low number will minimize the risk of successful brute force attacks to the SSH server.
While the recommended setting is 4, your setting may be. different. The MaxAuthTries parameter specifies the maximum
number of authentication attempts permitted per connection. When the login failure count reaches half the number, error
messages will be written to the syslog file detailing the login failure. This control uses InSpec’s built-in sshd_config resource
to inspect the configuration of the OpenSSH daemon to look for a setting that is equal to or less than 4.

control "cisecurity.benchmarks_rule_5.2.5_Ensure_SSH_MaxAuthTries_set_
to_4_or_less" do

title "Ensure SSH MaxAuthTries is set to 4 or less"
desc "The MaxAuthTries parameter specifies the maximum number of

authentication attempts permitted per connection. When the login failure
count reaches half the number, error messages will be written to the
syslog file. Setting the MaxAuthTries parameter to a low number will
minimize the risk of successful brute force attacks to the SSH server."

impact 1.0
tag "cis-rhel7-2.1.1": "5.2.5"
tag "level": "1"
tag "type": ["Server", "Workstation"]
describe sshd_config do

its('MaxAuthTries') { should cmp <= 4 }
end

end

23

Requirement 10: Track and Monitor all Access to Network Resources and Cardholder Data

Logging mechanisms and the ability to track user activities are critical in preventing, detecting, or minimizing the impact of a
data compromise. The presence of logs in all environments allows thorough tracking, alerting, and analysis when something
does go wrong. Determining the cause of a compromise is very difficult, if not impossible, without system activity logs.

1. Ensure rsyslog or syslog-ng is installed

The security enhancements of rsyslog and syslog-ng such as connection-oriented (i.e. TCP) transmission of logs, the
option to log to database formats, and the encryption of log data en route to a central logging server, justify installing
and configuring the package. These alternative logging systems are recommended replacements to the original syslogd
daemon. The use of “describe.one” ensures that either rsyslog OR syslog-ng must be installed in order for the
requirements of this control to be met.

2. Ensure permissions on all log files are configured

It is important to ensure that log files have the correct permissions to ensure that sensitive data is archived and protected.
Log files stored in /var/log contain logged information from many services on the system, or on centralized logging hosts,
data from services on other systems. This control uses InSpec’s file resource to ensure that all conditions are true in order for
the requirements of this control to be met.

control "cisecurity.benchmarks_rule_4.2.3_Ensure_rsyslog_or_syslog-ng_
is_installed" do

title "Ensure rsyslog or syslog-ng is installed"
desc "The rsyslog and syslog-ng software are recommended replacements

to the original syslogd daemon which provide improvements over syslogd.
The security enhancements of rsyslog and syslog-ng such justify
installing and configuring the package."

impact 1.0
tag "cis-rhel7-2.1.1": "4.2.3"
tag "level": "1"
tag "type": ["Server", "Workstation"]
describe.one do

describe package("rsyslog") do
it { should be_installed }

end
describe package("syslog-ng") do

it { should be_installed }
end

end
end

24

3. Ensure suspicious packets are logged
When enabled, this feature logs packets with un-routable source addresses to the kernel log. Enabling this feature and
logging these packets allows an administrator to investigate the possibility that an attacker is sending spoofed packets to
their system. This control uses InSpec’s built-in kernel_parameter resource to test kernel parameters on Linux platforms. These
parameters are located under /proc/cmdline.

control "cisecurity.benchmarks_rule_4.2.4_Ensure_perms_on_all_logfiles_
configured" do
1010 title "Ensure permissions on all logfiles are configured"
1011 desc "Log files stored in /var/log/ contain logged information
from many services on the system, or on log hosts others as well.
Rationale: It is important to ensure that log files have the correct
permissions."

impact 1.0
tag "cis-rhel7-2.1.1": "4.2.4"
tag "level": "1"
tag "type": ["Server", "Workstation"]
command('find /var/log -type f').stdout.split("\n").each do |log_file|

describe file(log_file) do
it { should_not be_writable.by('group') }
it { should_not be_executable.by('group') }
it { should_not be_readable.by('other') }
it { should_not be_writable.by('other') }
it { should_not be_executable.by('other') }

end
end

end

control "cisecurity.benchmarks_rule_3.2.4_Ensure_suspicious_packets_are_
logged" do

title "Ensure suspicious packets are logged"
desc "When enabled, this feature logs packets with un-routable

source addresses to the kernel log. Rationale: Enabling this feature
and logging these packets allows an administrator to investigate the
possibility that an attacker is sending spoofed packets to their
system."

impact 1.0
tag "cis-rhel7-2.1.1": "3.2.4"
tag "level": "1"
tag "type": ["Server", "Workstation"]
describe kernel_parameter('net.ipv4.conf.all.log_martians') do

its('value') { should eq 1 }
end
describe kernel_parameter('net.ipv4.conf.default.log_martians') do

its('value') { should eq 1 }
end

end

25

Requirement 11: Regularly Test Security Systems and Processes

The PCI DSS requires regular tests of security systems and processes. PCI DSS sections 11.2, 11.2.3, and 11.3.3 all require
running internal scans against CDE components to detect, report, and remediate any possible system vulnerabilities. Yet
many companies fail to meet requirement 11.

The 2020 Verizon Payment Security Report found that only 27.9% or organizations achieved 100% compliance. And that for
the 10th year in a row, Requirement 11 posed the most difficult for companies trying to achieve full compliance. The lowest
rates of compliance are getting worse year over year with only 51.9% of companies having full compliance in 2019. The
report further indicates that currently companies across several verticals struggle the most with this particular requirement of

the PCI DSS.

Adopting a continuous compliance approach with Chef Compliance allows you to satisfy audit requirements at any time and
make audits painless. Chef Compliance allows you to detect fleetwide compliance shortcomings, prioritize, and automate
necessary remediations.

Chef Compliance provides a clear view of both technology assets and real-time compliance status. Chef Compliance’s easy-
to-use, agentless detect mode helps you quickly assess the state of security on your systems. It’s built-in metadata for impact
and severity scoring allows to easily determine which areas to focus on for subsequent remediation. Severity levels per
control can also be customized to increase or decrease the criticality of findings—or even turn them off if they are mitigated
by other compensating controls in the environment.

PCI DSS sections 11.5 & 11.6 require use of a change-detection mechanism as well as documentation of security policy and
operational procedures. Chef Compliance one to set up a detect-and-correct cycle to help respond to unauthorized changes
on systems and simultaneously document the correct systems policy with use of tools like configuration management.

Setting up a continuous test and remediation cycle can help make compliance part of the development process. It can also
eliminate wasteful pre-production security scans, which slow down development and create rework for engineers, by
regularly integrating those scans into development processes. It allows organizations to communicate clear policy and
procedural intent by replacing rules written in English (e.g., in imprecise formats like PDF or Excel) with executable code that
enables collaboration with development teams.

New vulnerabilities are discovered every day. Rather than waiting for a vendor to issue opaque detection rules in a quarterly
fix pack, Chef Compliance’s human-readable language allows you to write and publish vulnerability detection code that same
day and immediately use it to keep the company safe.

Find and remediate compliance issues as they happen, rather than in quarterly audits. Making this type of regular test and
remediation cycle an integrated part of your work has the added benefit of meeting many of the requirements in this section
of the PCI DSS compliance.

https://www.verizon.com/business/resources/reports/payment-security-report/

26

Requirements 9 & 12

PCI DSS requirements 9 (Restrict physical access to cardholder data) and 12 (Maintain a policy that addresses information
security for all personnel) apply to physical access (e.g., authorized entrance to a facility) and to process controls that
cannot be automatically inspected using Chef Compliance.

Conclusion
This guide is not a definitive set of controls necessary to fulfill all the requirements in a PCI DSS audit, but it does illustrate
what these controls do, how they apply to PCI requirements, and provides a practical guide to understanding which CIS
benchmarks map to which PCI requirements.

In practice, members of both technical and compliance teams working with systems in the CDE would not have to
compose these tests from scratch. A majority of the tests in this whitepaper are a part of the CIS benchmarks for Red Hat
Enterprise Linux 7, available for use with a Chef Compliance license.

Our guide demonstrates some of the core functionality available when using Chef Compliance to implement compliance
reporting controls. By adopting a continuous compliance approach, organizations can quickly answer audit questions at any
time--not just quarterly or yearly. By customizing these controls to meet the needs of particular environment, one can enter
an audit cycle knowing exact compliance posture and avoid being surprised by auditors finding unexpected weak points in
the environment.

To see how Chef Compliance can help you achieve continuous compliance and reduce the time your teams spend on
fulfilling audit requests, visit chef.io/compliance.

A recommended next step would be to use Chef Compliance to integrate automated compliance assessments into your
continuous delivery workflow. Find out more about how Chef Compliance enables continuous assessments by visiting
http://www.chef.io/compliance

Legal Disclaimer
Progress Software Corporation does not provide legal advice. This document is intended for informational purposes only and
does not constitute legal advice, nor shall this document or any software product or other offering referenced herein serve as
a substitute for the reader’s compliance with any laws (including but not limited to any act, statute, regulation, rule, directive,
administrative order, executive order, etc. (collectively, “Laws”)) referenced in this document. Please consult with competent
legal counsel regarding any Laws referenced herein.

This document is provided “as is” without warranty of any kind. All express or implied representations, conditions
and warranties, including any implied warranty of merchantability or fitness for a particular purpose, are
disclaimed, except to the extent that such disclaimers are determined to be illegal.

https://www.chef.io/products/chef-compliance
http://www.chef.io/compliance

27

ABOUT PROGRESS

Progress (NASDAQ: PRGS) provides the best products to develop, deploy and manage

high impact business applications. Acquired in October 2020, Chef extends Progress
offerings in DevOps and DevSecOps, with market-leading, modern infrastructure,

compliance, and application automation. With Progress, you can accelerate the creation
and delivery of strategic business applications, automate the process by which you

configure, deploy and scale those apps, and make your critical data and content more
accessible and secure— leading to competitive differentiation and business success. Over
1,700 independent software vendors, 100,000+ enterprise customers, and a three-million-

strong developer community rely on Progress to power their applications. Learn about
Progress

at www.progress.com or +1-800-477-6473.

http://www.progress.com/
http://www.progress.com/

	Introduction
	PCI DSS and CIS Controls
	About Chef Compliance
	Chef Continuous Compliance Cycle

	PCI Requirements
	Requirement 1: Install and Maintain a Firewall Configuration to Protect Cardholder Data
	1. Ensure firewall rules for all open ports

	Requirement 2: Do Not Use Vendor-Supplied Defaults for System Passwords and Other Security Parameters
	1. Ensure password creation requirements are configured
	• try_first_pass - retrieve the password from a previous stacked PAM module. If not available, then prompt the user for a password.
	2. Ensure system accounts are non-login
	3. Ensure password fields are not empty
	4. Ensure inactive password lock is 30 days or less

	Requirement 3: Protect Stored Cardholder Data
	1. Ensure a non-authorized user cannot reach cardholder data

	Requirement 4: Encrypt transmission of cardholder data across open, public networks
	1. Ensure that the TLS 1.2 protocol is active on any SSL ports

	Requirement 5: Protect all Systems Against Malware and Regularly Update AV Software
	1. Ensure package manager repositories are configured
	2. Ensure updates, patches, and additional security software is installed

	Requirement 6: Develop and Maintain Secure Systems and Applications
	1. Ensure iptables is installed
	2. Ensure a default deny firewall policy

	Requirement 7: Restrict access to cardholder data by business need to know
	1. Ensure access to the su command is restricted
	2. Ensure SSH root login is disabled
	3. Ensure SSH access is limited

	Requirement 8: Identify and Authenticate Access to System Components
	1. Ensure SSH PermitEmptyPasswords is disabled
	2. Ensure SSH LogLevel is set to INFO
	3. Ensure SSH MaxAuthTries is set to 4 or less

	Requirement 10: Track and Monitor all Access to Network Resources and Cardholder Data
	1. Ensure rsyslog or syslog-ng is installed
	2. Ensure permissions on all log files are configured
	3. Ensure suspicious packets are logged

	Requirement 11: Regularly Test Security Systems and Processes
	Requirements 9 & 12

	Conclusion
	Legal Disclaimer
	ABOUT PROGRESS

