
Automation
and the
DevOps
Workflow

Copyright © 2015 Chef Software, Inc.
http://www.chef.io 10/2015

		 1

Executive Summary
The advent of the digital economy has fundamentally changed consumption patterns.
Today’s customers are accustomed to goods and services that are available online
anytime, anywhere and from any type of device. To satisfy these new expectations,
every enterprise must transform the way it does business or risk obsolescence. En-
terprise IT, once considered a back office support function, must become the front
office connection to customers and the linchpin of a mission-critical transformation.

Innovative companies such as Amazon, Google, and Facebook have set the
pattern for this transformation. These innovators, along with an active community of
web practitioners, have developed a workflow and set of practices, encapsulated by
the term DevOps, that brought about many technical and cultural changes to IT and
resulted in infrastructures and applications that were extraordinarily fast and scalable.

The hallmarks of a DevOps workflow are velocity, consistency, scale and the
ability to incorporate feedback.

Automation
and the
DevOps Workflow

DevOps is at the heart of becoming a software-led company, and it is no longer
for the select few. DevOps is becoming the norm for how enterprises handle change,
whether to their infrastructure or to their applications.

However, established enterprises have a challenge that the DevOps innovators
did not. They have legacy workloads and regulatory requirements to consider. Migrat-
ing these workloads to a flexible technology stack must be done in a way that reduc-
es risk, ensures stability and guarantees regulatory compliance. In addition,
established enterprises have existing processes for managing change, that often
involves many manual steps. These processes must be replaced by a more automat-
ed and collaborative workflow.

This paper focuses on the technical attributes of automation and the DevOps
workflow and shows how they help you meet the demands of the digital economy.

VELOCITY CONSISTENCY SCALE FEEDBACK

2	 AUTOMATION AND THE DEVOPS WORKFLOW

Every Business Is Software
Every business is a software business, no matter what industry it’s in. Customers,
whether outside the corporate firewall or behind it, have higher expectations for
speed, reliability, and personalized content. They expect fast response times and
great customer service.

These expectations exist because innovative online companies such as Ama-
zon, Google, and Facebook constantly raise consumer expectations. Any business
that wants to remain competitive must emulate the patterns developed by the web
innovators, which are summarized by the term DevOps. Following DevOps patterns
allows companies to quickly respond to customer demands with the software that
provides the experience customers want.

Fast response to consumer demand requires a technology stack that can react
quickly to changing business needs while maintaining its resiliency and reliability, and
it requires the ability to deliver new application features just as quickly.

Defining DevOps
Web innovators discovered that to promote agility and speed, IT and development
must work together to build a technology stack that can safely support rapid deploy-
ments and dynamic workloads.

These innovators combined software developers and IT professionals into uni-
fied teams aligned around shared business goals. These teams use a workflow that
relies, technologically, on automation and socially, on collaboration. This new way of
working makes it possible for companies to develop infrastructure and applications
that respond quickly to change while remaining stable and reliable. The new process
also enables much faster and more reliable delivery of application features.

As the new way of working disrupted the conventional thinking that had shaped
IT operations in the past, DevOps became the accepted name used to describe it.
Today, DevOps can be thought of as the tools, processes and culture that are central
to becoming a software-led organization.

Sta�

Complexity

Number of
servers

Time to
market

Dimensions
of Scale

DevOps Patterns
One of the goals of DevOps is to create a compute environment that supports rapid
deployment, and has the ability to react swiftly and effectively to changes in business
requirements. These attributes scale even as the overall system becomes larger and
more complex.

	 AUTOMATION AND THE DEVOPS WORKFLOW	 3

There are some general patterns that characterize how DevOps practitioners
achieve this goal. Here are some of the patterns.

DevOps practitioners focus on the digital customer experience. All the technol-
ogy they invest in and the innovations they create are a means for delivering a great
customer experience. These customers can exist either
outside or inside of the firewall.

DevOps practitioners collect data. Web innovators
are great believers in data and collect it on everything
they can as often as they can. They improve their processes based on evidence
provided by the data they collect. The data helps them understand what’s working
and what isn’t.

DevOps practitioners invest in technical innovation. Successful online compa-
nies encourage innovation, and the investments don’t have to be large.

Intuit is a great example of a company that encourages innovation. Intuit gives
employees 10% of their hours as unstructured time. The legal department created a
toolkit that lets product managers try new business ideas without needing to talk to
legal. Intuit’s IT department leveraged a DevOps workflow to accelerate the setup
time for test environments for new web products from two months to two hours.

DevOps practitioners use open source software and dynamic infrastructure.
A reliance on open-source software is typical in DevOps environments.

DevOps practitioners also rely on dynamic infrastructure where resources are
provided on demand to the company’s business units, with service-level agreements
that guarantee some level of quality in areas such as availability, performance and
security. Individual departments needn’t be responsible for planning capacity; in-
stead, capacity planning occurs at the corporate level and is aligned to the needs of
the business.

The incentive to use open source software and commodity hardware, and to
provide infrastructure as a service (IaaS) is not necessarily cost—it’s the ability to
customize and control the technology stacks and respond quickly to business needs.

DevOps practitioners tend to use service-oriented architectures. Factoring ap-
plications into stable, independent services that use web protocols and associated
architectural patterns is very common in the DevOps world. Each service can be
independently implemented, deployed, and scaled. As a result, teams become
aligned to business functions rather than divided into silos that isolate technical spe-
cialties from each other and put drag on the ability to deliver value.

DevOps practitioners improve through multiple iterations. Amazon, Google and
Facebook don’t wait until they’ve built what they think is the perfect product only to
find out that what they’ve done isn’t what the customer wants. Instead, they start with
a minimal implementation and build it incrementally. They use A/B testing to find out
what works and what doesn’t. In 2011, Google ran more than 7,000 A/B tests on its
search algorithm. Amazon.com, Netflix, and eBay are also A/B advocates, constant-
ly testing potential site changes on live users.

DevOps practitioners avoid silos through transparency. Silos are not just orga-
nizational divisions but informational ones as well.

When Nordstrom used DevOps principles to build a continuous delivery pipeline,
they put developers, web site operations engineers, QA engineers, and configuration
management together to form a single team. The team combined expertise across
multiple technical disciplines and retained focus and accountability by holding week-
ly demos. The end result of all that transparency is that now people all over the
company, even people in the finance department, email senior vice presidents, ask-
ing how can they help with continuous delivery.

We start with the customer and work backwards.1
– Jeff Bezos, Amazon.com

4	 AUTOMATION AND THE DEVOPS WORKFLOW

Increased communication has many obvious benefits. Within a team, members
quickly learn about proposed changes and any problems that exist. Involving a num-
ber of different stakeholders, such as product managers, members of the sales force,
and consulting can bring in valuable information from areas outside the team mem-
bers’ areas of expertise. Making information available to everyone in the company
gives employees a sense of ownership and participation.

DevOps practitioners deploy software very quickly. Part of the reason DevOps
teams move so quickly comes from their belief that failure is expected in a culture
that innovates and moves rapidly. However, they don’t want to fail after having spent
months on a product. Instead, they use a very fast stream of incremental releases so
that, when there is a failure, it’s easy to correct and their investment is small. A flexi-
ble, managed infrastructure allows them to quickly put together prototypes and test
them. Automated processes, such as continuous integration and continuous delivery,
make deployment and change management faster and more reliable.

DevOps practitioners build compliance into the software deployment pipeline.
Instead of being tacked on at the end of the production process, compliance is em-
bedded into the software production line. Compliance at velocity uses extensive au-
tomation to increase velocity and accuracy.

For example, GE Capital (GEC) realized that, to remain competitive, it needed
to streamline the way it developed, delivered and maintained software. At the same
time, GEC operates in a highly regulated environment and is obligated to comply with
many requirements. GEC’s challenge was one that many large enterprises face: How

do you remain compliant and still operate at
velocity?

For GEC, the answer was DevOps. To en-
sure that compliance was an integral part of
this new software delivery process, they
brought the regulatory, compliance, gover-
nance, and security teams in early to take toll-
gates out and get rid of manual processes so
they could deliver at velocity and at the same
time remain compliant and secure.

DevOps practitioners use version control. Version control systems give transpar-
ency to all aspects of orchestration, configuration and deployment. With version con-
trol team members can review the history of all change sets at any time.

DevOps practitioners rely on automation. An automation platform gives you the
ability to describe your entire technology stack as executable code. DevOps practi-
tioners use automation to:

•  Standardize development, test and production environments.

•  Effectively deploy and manage cloud resources.

•  Eliminate error-prone, time-consuming manual tasks.

•  Improve cooperation between development and operations.

•  Implement automated release pipelines.

“Steve Blank and Eric Ries, both serial entrepreneurs,
have studied what allows businesses such as Google to
succeed in today’s quickly changing world. They found

that…the companies that succeed in dynamic market-
places are those that rapidly develop products with

minimal planning and commitment of resources.”6

	 AUTOMATION AND THE DEVOPS WORKFLOW	 5

What is Automation?
Automation gives you immediate access to the same patterns of success that the
web innovators had to develop themselves.

When you automate your technology stack, you describe it with executable code.
For example, here’s how you can use the Chef automation platform to ensure that
the Apache web server package is installed and being run as a service on a RHEL
or CentOS server.

package 'httpd'

service 'httpd' do

 action [:enable, :start]

end

This code tests to see if Apache is installed and running. If not, it installs the
Apache package, called httpd, enables the service and starts it when the server
boots. The code is also readable by humans so that team members have a shared
understanding of the system’s intended state.

If you’re not using an automation platform, you might perform these tasks by
hand. If it’s a manual task, imagine what it would be like if you had to do the same
procedure for 50 servers, 500 servers or even 50,000 servers. With automation, you
simply run the code as often as needed.

Automation platforms have significant advantages over isolated scripts that have
traditionally been used for system administration tasks. Platforms like Chef take care
of many of the complexities of configuring a server for you. Chef recipes have a
global view of your network because they interact at run time with the Chef server,
which is important when accounting for dependencies between network compo-
nents. Standalone scripts can only give you a piecemeal view.

Full-stack automation can revolutionize the way your teams work together. With
it, the same practices you follow to ensure the quality and manageability of your
applications can now be applied to your infrastructure and all of the services in the
stack. You can faithfully encode your entire technology stack in version control, and
you can test it. If you lose part of your infrastructure or even all of it, you can recreate
it by rerunning the code that describes it.

Assessment Local Dev

Revision Control

ProductionCollaborative
Dev

 



Benefits of automation
Automation enables velocity, scale, consistency and feedback. All of these qualities
are of a piece. Any one depends on the other three—for example, you can’t scale
unless you are able to quickly add servers with consistent configurations. You can’t
get feedback automatically without being able to support different real-time testing
and monitoring techniques. You can’t respond to feedback effectively unless you have
a high-velocity way to deliver incremental changes safely.

6	 AUTOMATION AND THE DEVOPS WORKFLOW

VELOCITY
Automation increases velocity in many ways. Simply replacing manual procedures
with automated ones makes infrastructure management more efficient. However, as
your use of automation becomes more sophisticated, you’ll find that you’ll markedly
increase your deployment rate and the ease with which you manage all your resourc-
es, both on premises and in the cloud. Automation makes techniques such as A/B
testing possible. You can quickly find out what works for your customers before in-
vesting huge amounts of time and money. Quick response to changing business
needs is essential.

SCALE
Automation allows you to scale up (or down) in response to demand. Automation is
a critical component of any strategy that requires dynamic provisioning of infrastruc-
ture at scale. Automation enables elastic scale, whether you’re operating on premis-
es, in the public cloud, or in a hybrid environment.

CONSISTENCY
Automation ensures consistency across your network. Consistency means confor-
mance to your business’s policies. An automation platform checks to make sure that
each server is within policy and corrects it if it isn’t. In other words, a good automation

platform must make it easy to prevent config-
uration drift over time.

Consistency makes infrastructure more
robust and reduces risk in many ways.
The immediate benefit is that you have a stan-
dardized process for provisioning servers.

A consistent environment makes it much
easier to migrate applications to the cloud.
Consistency gives you control, and control
reduces risk. With automation, moving lega-
cy applications to the cloud is an orderly
process.

Requirements for an automation platform
To provide the foundation for building and managing infrastructures according to the
principles of DevOps, a good automation platform has these essential characteris-
tics:

•  It creates a dependable view of your entire network’s state.

•  It can handle complex dependencies among the nodes of your network.

•  It is fault tolerant.

•  It is secure.

•  It can handle multiple platforms such as RHEL, Ubuntu and Windows
Server, as well as legacy systems.

•  It can manage cloud resources.

•  It is the basis for an efficient workflow.

•  It provides a foundation for innovation.

Let’s examine these points in more detail.

Your automation platform should create a dependable view of your network. A
good automation platform knows the state of your entire network at any given time.
You need a global view of your network. Scripts can’t provide this capability.

 When you represent [infrastructure] in code, you can
version that code, and you can say, “This is what the

machine looks like today and this is what it looked like
last week, and this is when somebody changed it.”

When you have that, you can almost print these new
machines like you have a factory press. You just put

the code in and Chef takes care of it. Chef prints out
brand new machines for you, faster than ever.7

—Jamie Winsor, software engineer, Riot Games

	 AUTOMATION AND THE DEVOPS WORKFLOW	 7

Your automation platform should handle complex interdependencies. Most in-
frastructures have many dependencies between servers. For example, a load bal-
ancer needs to know when a new application server is available. Isolated scripts can’t
handle complex dependencies that require distributed coordination.

Implementing distributed coordination requires specialized techniques that take
a holistic view of the network. It’s more than just running scripts or deploying “golden
images.”

A good automation platform will allow the network to converge to its desired
state over time and provide search-based configuration that allows nodes to query
the automation platform for information about other nodes in the network. This is
sometimes called policy-based convergence.

Your automation platform should be scalable. Infrastructures tend to become
larger and more complex over time. To ensure scalability, a good automation platform
will have a distributed, rather than a centralized architecture. With a centralized ar-
chitecture, most of the work occurs on the server, which can become a bottleneck as
networks grow. With a distributed architecture, the work occurs on the nodes, and a
node only has to take care of its own configuration.

Your automation platform should be fault tolerant. A good automation platform is
able to recover when network connections go offline or when a system needs to be
rebooted. It should also be able to handle errors and unexpected conditions. A good
automation platform will eventually converge to the desired state, even if faults occur.

Your automation platform should be secure. A good automation platform ensures
that communications between the server and the nodes are secure. It enables gran-
ular control over who can access different resources.

Your automation platform should handle multiple platforms. Many infrastruc-
tures include multiple operating systems. For example, there may be Windows, AIX
and Linux machines in the same network. A good automation platform supports
heterogeneous networks.

Your automation platform should handle legacy systems. Most infrastructures
include legacy systems that don’t fit any standard configuration model. An automation
platform should be extensible and not just a set of fixed capabilities.

Your automation platform should be able to manage cloud computing environ-
ments. A good automation platform is cloud capable and provides the structure and
consistency needed to make moving legacy workloads to the cloud a low-risk oper-
ation.

8	 AUTOMATION AND THE DEVOPS WORKFLOW

Your automation platform should automate your workflow, not just your infra-
structure. DevOps is a new way of working together safely and at high velocity. Your
automation platform needs to understand the demands of the DevOps workflow and
help you replace cumbersome change management processes with proven, modern
approaches taken from the experience of web innovators.

Your automation platform should provide a foundation for innovation. Even if
you’re automating basic configuration tasks now, what do you want to be doing a year
from now, or five years from now? You need a platform that meets your present needs
but won’t limit you as you grow.

Why Chef?
Chef8 is the automation solution for the DevOps workflow. Chef was born with the
DevOps movement, and experience with DevOps thinking and best practices have
been distilled into every aspect of Chef.

Chef is IT automation platform for DevOps
Only Chef is a dynamic, policy-based automation platform that securely distributes
intelligence across the entire network. What does this mean? It means that

•  Chef has a unique ability to scale, from start-ups to Facebook to GE.

•  Chef has a unique ability to ensure consistency in complex, highly dynamic
environments.

•  Chef is fault tolerant.

•  Chef grows with you. When it comes to solving configuration and automation
challenges, Chef makes the easy things easy and the hard things possible.

CHEF IS HIGHLY SCALABLE
Chef is constructed so that most of the computational effort occurs on the nodes
themselves rather than on the Chef server.

With Chef, the intelligence about the desired state of the network is distributed
across the network itself. Each node of the network periodically executes the current
instructions from the Chef server. This iterative process ensures that the network as
a whole converges to the state envisioned by business policy.

Automation Server

Node

Policy
Request current policy

Policy and network state

Current node state
State

	 AUTOMATION AND THE DEVOPS WORKFLOW	 9

Chef is the only automation platform that uses
a fully distributed approach, and this has some
implications that make it uniquely suited for the
massive scale of today’s applications. Chef’s
unique ability to scale is one of the reasons Face-
book uses Chef for its production systems.

CHEF CAN HANDLE COMPLEX,
HIGHLY DYNAMIC
ENVIRONMENTS
Chef has a unique ability to ensure consistency in
complex, highly dynamic environments. This is a
weak spot of a centralized approach where a server blocks while waiting for a
response from a node, or of an approach where logic executes on the server.

Chef handles bidirectional dependencies. If a network uses database replicas,
each replica must know about the others in order to remain in sync. Symmetric de-
pendencies such as these create a sequencing problem that can only be solved by
using policy-based convergence. Full configuration doesn’t occur in a single step, but
the network as a whole eventually converges to its desired state.

Chef handles reboots and network resets. Centralized approaches that rely on
long-lived network connections break down when the networking service goes offline
or the system needs to be rebooted as a part of the requested operation. A more
distributed approach, where the node itself initiates contact with the server, allows
the node to update state after coming back online. The Chef server can orchestrate
a complex series of operations, even when nodes under management require net-
work resets or must reboot as part of the process.

Chef is fault tolerant. When intelligence is distrib-
uted to the nodes, appropriate recovery measures
can be taken when an error or unexpected condi-
tion occurs. It is more difficult for a centralized
server to respond in this case.

Chef is secure on every type of network. Chef
uses SSL to ensure that a Chef server responds
only to requests made by trusted users. When a
node is configured to run the Chef client, bidirec-
tional validation of identity occurs between the
Chef server and the newly added node. This
makes Chef suitable for managing nodes on every
type of network, even public networks.

Chef supports multiple platforms and legacy systems. Chef supports many fla-
vors of Linux and Unix, as well as Windows Server. For example, Chef includes
support for Microsoft’s Desired State Configuration (DSC) PowerShell extension.
Chef also supports containers. With Chef, engineers can use the same skill set to
manage every platform in your network.

Chef comes with a large number of pre-defined building blocks, called resources,
which describe pieces of infrastructure, such as files, templates, and packages. The
Chef community has also written many collections of configuration instructions called
cookbooks, which cover many situations.

However, if you need to write your own configuration steps for a particular sys-
tem, you can do it with Chef. Chef isn’t constrained by a limited, domain-specific
language. You have the flexibility you need to describe any piece of infrastructure you
have.

By bringing in Chef, we were able to automate a very
heterogeneous infrastructure that included both legacy
and new applications and we were able to open up
some interesting career paths for our engineers. We
have hardcore UNIX engineers now happily automating
Windows infrastructure because they can do it through
code.10

—Rob Cummings, Infrastructure Engineer, Nordstrom

There are three dimensions of scale we generally
look at for infrastructure – the number of servers,
the number of different configurations across those
systems, and the number of people required to
maintain those configurations. Chef provided an
automation solution flexible enough to bend to our
scale dynamics without requiring us to change our
workflow.9

—Phil Dibowitz, Production Engineer at Facebook

10	 AUTOMATION AND THE DEVOPS WORKFLOW

We’re looking at cloud architecture. We’re looking at
public cloud, we’re looking at private cloud. We want

to do some completely different things that we haven’t
been able to do before. The only reason that I’m able

to consider those is because of what we did with Chef.
It’s now opened a completely new capability that I

hadn’t foreseen. I view Chef as the tool that has had
the single biggest impact in our transformation.11

—John Esser, Director of Engineering Productivity
and Agile Development, Ancestry.com

Chef can manage cloud resources. If you’re already in the cloud or thinking about
moving some servers there, Chef has proven to be a great way to manage your re-
sources. For example, Cycle Computing uses Chef to manage tens of thousands of
public cloud nodes. A large percentage of customers use Chef to automate and
manage cloud resources.

Chef enables test-driven infrastructure
When your infrastructure is described as code, you can treat that code just as you
would your application source code. For example, do you have unit tests for your
applications that are initiated automatically whenever there is a check-in to your
version control system? You can now do the same with your configuration code.

With automated testing, you will catch problems earlier, before they impact your
release cycle. The earlier you catch a problem, the easier and less expensive it is to
fix, and this is why testing is such an important part of DevOps practice.

The V-diagram, common in software engineering, illustrates this.

As you can see, each kind of testing activity (on the right side of the V) checks
a particular phase of development (shown on the left side). The cost of rework rises
as defects are discovered later in the project. It’s better to begin testing at the vertex
of the V, with unit tests. Catching a defect during a unit test is much easier than trying
to fix it when it’s being tested with other components that might make it difficult to
discover where the actual problem lies.

The practice of automatically testing your in-
frastructure code is called test-driven infrastruc-
ture. Testing the code that provisions and
configures your infrastructure gives confidence
that your infrastructure will behave as it should
when put into the production environment.

Chef has a strong commitment to test-driven
infrastructure as part of the DevOps workflow. In
fact, it is the only company that provides commer-
cial support for a full suite of tools for test-driven
infrastructure.

The following diagram shows how you can
use the different tools Chef provides to test your
code at all stages of development.

Architecture
design

Acceptance
testing

Component
design

Integration
testing

Coding Unit
testing

Create new
skeleton
cookbook

Create a VM
environment
for cookbook
development

Write/debug
cookbook
recipes
(iterative step)

Perform
acceptance
tests

Deploy to
production

	 AUTOMATION AND THE DEVOPS WORKFLOW	 11

Chef automates enterprise
change management
The DevOps workflow allows you to safely and
rapidly deploy changes to applications and infra-
structure. However, it can be challenging to imple-
ment the actual pipeline that moves your code
from development to production. Not only must the
pipeline’s design address technical challenges,
but it should also encourage practices that sup-
port a DevOps workflow. Those practices are a
large part of the reason that DevOps make it pos-
sible to quickly move code out to production and
realize its value.

Integrating DevOps practices with automation is the foundation of a new ap-
proach to enterprise change management. Chef Delivery, a recent addition to the
Chef platform, is an example of such a system. Its design is based on Chef’s years
of experience with its enterprise and big web customers. You use Chef Delivery for
both your infrastructure and application code, giving your operations and develop-
ment teams a common platform for developing, testing and deploying cookbooks and
applications. Chef Delivery also incorporates DevOps best practices, such as using
source control and automated testing, into its design.

Here is the Delivery workflow:

The first step of the workflow is to create a change on a developer’s workstation.
The next step is to test the change locally using the automated tools described above
in the section “Test-Driven Infrastructure.” While it is still a new practice to many
people, local testing is an excellent way to discover bugs early in the development
process, when they are easier and cheaper to fix.

Once a change passes local tests, the person making the change commits it
using the revision control system and submits the change for review using Delivery.
At this point, Delivery runs automated verification tests, typically the same tests that
should have run locally. Delivery runs them again as a safety check, to make sure
the code does what it should.

Once the tests pass, the change is ready for review. Code review is an important
best practice that Delivery encourages. Teams can create any number of policies
over how the code is reviewed and who participates. Code review becomes the cor-
nerstone of change management.

Once the change is approved, Delivery initiates an automated build process to
create an artifact (packaged set of files). If, for example, the change is a cookbook,
Delivery creates a new cookbook with a new version number. If the change is to
application code, Delivery might, for example, build a package in a format like WAR
(Web Application Archive).

After the build stage, the artifact moves to the Acceptance stage. Delivery runs
additional automated tests and optionally allows for manual testing to occur. When
all tests of the Acceptance stage pass, the change is ready for delivery.

Code has … given us a single way to communicate.
Before we had different groups operating with different
tools, and different mindsets in how they approached
things. By distilling it all down to code, we’re able to
leverage the same practices among different groups.
It allows us to be more agile, move faster and respond
when the business needs us to respond.12

—Rob Cummings, Infrastructure Engineer, Nordstrom

12	 AUTOMATION AND THE DEVOPS WORKFLOW

When to release the change is a business decision. When that decision is made,
an authorized person presses the “Deliver” button in the Delivery user interface. Chef
Delivery then promotes the artifact to a series of environments that comprise the
automated release process.

Here is a diagram of the Chef Delivery pipeline. You can see that it is made up
of two parts: per-project acceptance pipelines and a shared delivery pipeline. An
acceptance pipeline encompasses all the workflow steps up to when someone re-
leases an artifact for delivery. The artifact then moves on to the Union, Rehearsal and
Delivered stages of the shared pipeline. These make up the release process.

For example, you might have an application and its associated infrastructure that
you want to deploy. The infrastructure is managed by a Chef cookbook. The applica-
tion is might be composed of microservices that communicate with one another us-
ing web protocols. Each microservice can be tested independently in its own
acceptance pipeline.

At the end of an acceptance pipeline, when someone decides to deliver the ar-
tifact, it moves into the Union stage, where it is tested with the latest versions of the
other components that make up the application and its supporting infrastructure.

Once the application and infrastructure pass the Union stage, they move on to
Rehearsal. More tests are run and, assuming they pass, the components move to
Delivered.

Delivery includes a graphical user interface that gives visibility into the entire
process. For example, you can tell at a glance which organizations include which
projects. Dashboards let you track each change and see its status as it moves
through the pipeline.

Delivery extends the capabilities of Chef server automation to provide change
management and rapid deployment for the entire technology stack. With Delivery,
companies have a well-defined workflow that moves changes, features and new
services to production quickly and safely.

	 AUTOMATION AND THE DEVOPS WORKFLOW	 13

Summary
No matter what your plans are for your company, Chef can help you create and main-
tain the infrastructure that will make those plans possible. Chef gives you end-to-end
control over application deployment, beginning with the developer workstation and
ending with the production servers. Chef’s scalability means that no matter how large
and complex your network becomes, Chef can handle it. Chef’s flexibility means that
you can describe any configuration you have.

Companies such as Intuit, Nordstrom, and Disney use Chef to spur innovation,
create new offerings, and speed deployments.

Here are the key points of this paper.

•  Web innovators such as Amazon, Google, Facebook and others have set
customer expectations for what the digital experience should be. These
customers can be either outside or inside the firewall.

•  Any company that wants to remain competitive must follow the lead set by
the web innovators, who have redefined the customer experience.

•  To provide a fast, responsive, personalized experience to their customers,
web innovators have adopted practices that, collectively, are known as
DevOps.

•  DevOps is for any business that wants to move at velocity.

•  The technical foundation of DevOps is automation. There are also important
cultural and organizational aspects of DevOps.

•  Automation supports a workflow that provides speed, scale and consistency.

•  A good automation platform is scalable, can handle complexity, and has
features that let enterprises plan for the future.

•  Chef’s distributed architecture lets it securely scale to any infrastructure, no
matter how large or complex.

•  Chef supports multiple platforms, including Windows, AIX, Linux, and
containers.

•  Chef is the only automation platform with commercial support for automated
testing tools for IT automation.

•  Chef helps you through all aspects of full-stack application and infrastruc-
ture deployment, beginning with a developer’s workstation and ending with
the production servers.

•  Chef Delivery is a full-stack deployment pipeline whose design reflects
Chef’s experience with its customers in how to deploy applications and
infrastructure quickly and safely. It integrates automation with DevOps best
practices and modernizes enterprise change management.

14	 AUTOMATION AND DEVOPS WORKFLOW

Notes

1. http://www.slate.com/articles/news_and_politics/newsmakers/2009/12/

we_start_with_the_customer_and_we_work_backward.html

2. http://www.forbes.com/sites/bruceupbin/2012/09/05/four-ways-intuit-keeps-new-ideas-flowing/

3. http://www.wired.com/2012/04/ff_abtesting/all/

4. https://www.youtube.com/watch?v=Ot5H2KfWAxI

5. http://www.forbes.com/sites/benkepes/2015/04/17/ge-capital-and-its-devops-reinvention/

6. Fail Fast, Fail Often: How Losing Can Make You Win, Ryan Babineaux and John Krumbolz

7. http://www.youtube.com/watch?v=URi4_DLrFxQ

8. http://www.chef.io

9. http://www.youtube.com/watch?v=YA8p65qcD0I

10. http://www.youtube.com/watch?v=XqFrvYJ6IGc

11. http://www.youtube.com/watch?v=5enyC4lyPWE

12. http://www.youtube.com/watch?v=XqFrvYJ6IGc

